

c. Solve the difference equation $y_{n+2} + 6y_{n+1} + 9y_n = 2^n$ with $y_0 = y_1 = 0$ using z – transforms. (05 Marks)

Important Note : 1. On completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. 2. Any revealing of identification, appeal to evaluator and /or equations written eg, 42+8 = 50, will be treated as malpractice.

<u>Module-3</u>

5 a. Compute the co-efficient of correlation and equation of lines of regression for the data :

X	1	2	3	4	5	6	7
у	9	8	10	12	11	13	14

b. Fit a best fitting parabola $y = ax^2 + bx + c$ for the following data :

•21	· OA ·			10 1	15 aut	
Х	1	2	3	4	5	
у	10	12	13	16	19	
					<u> </u>	

c. Use the Regula – Falsi method to find a real root of the equation $x^3 - 2x - 5 = 0$ correct to three decimal places. (05 Marks)

OR

6 a. Find the co-efficient of correlation for the following data :

X	10	14	18	22	26	30
у	18	12	24	6	30	36

b. Fit a least square geometric curve $y = a e^{bx}$ for the following data :

X	0	2	4	0
У	8.12	10	31.82	

c. Use Newton – Raphson method to find a real root of the equation : $x \log_{10}^{x} = 1.2$ correct to four decimal places that is near to 2.5. (05 Marks)

Module-4

- 7 a. From the following table find the number of students who have obtained :
 - i) Less than 45 marks
 - ii) Between 40 and 45 marks.

							-
~	Marks	30 - 40	40 - 50	50 - 60	60 - 70	70 - 80	
	Number of students	31	42	51	35	31	
						()	06 Marks)

- b. Find the Legrange's interpolation polynomial for the following values y(1) = 3, y(3) = 9, y(4) = 30 and y(6) = 132. (05 Marks)
- c. Evaluate $\int_{0}^{1} \frac{dx}{1+x}$ taking seven ordinates by applying Simpson's $\frac{3}{8}$ th rule. (05 Marks)

OR

- 8 a. Give $u_{20} = 24.37$, $u_{22} = 49.28$, $u_{29} = 162.86$ and $u_{32} = 240.5$ find u_{28} by Newton's divided difference formula. (06 Marks)
 - b. Extrapolate for 25.4 given the data using Newton's backward formula :

x 19		20	21	22	23	
у	91	100.25	110	120.25	131	

(05 Marks)

c. Evaluate: $\int_{0}^{\infty} \frac{x}{1+x^{2}} dx by Weddle's rule taking seven ordinates.$ (05 Marks)

(06 Marks)

(05 Marks)

(06 Marks)

(05 Marks)

Module-5

- 9 a. Verify Green's theorem for $\oint_C (xy + y^2)dx + x^2dy$ where C is the closed curve of the region bounded by y = x and $y = x^2$. (06 Marks)
 - b. Derive Euler's equation in the form $\frac{\partial f}{\partial y} \frac{d}{dx} \left(\frac{\partial f}{\partial y^1} \right) = 0.$ (05 Marks)
 - c. If $\vec{F} = xyi + yzj + zxk$ evaluate $\int_{C} \vec{F} \cdot d\vec{r}$ where C is the curve represented by x = t, $y = t^2$, $z = t^3, -1 \le t \le 1$. (05 Marks)

OR

10 a. Verify Green's theorem in the plane for $\int_{C} (x^2 + y^2) dx + 3x^2 y dy$ where C is the circle $x^2 + y^2 = 4$ traced in the positive sence. (06 Marks)

b. Evaluate $\int_{C} (xydx + xy^2dy)$ by Stoke's theorem C is the square in the x-y plane with the vertices (1, 0), (-1, 0), (0, 1) and (0, 1). (05 Marks)

<u>r</u>.

c. Prove that the geodesics on a plane are straight lines.

res of strong

(05 Marks) (05 Marks)